Answer:
[tex]P(Even) = 0.547[/tex]
Step-by-step explanation:
Given
[tex]\begin{array}{ccccccc}{Sides} & {1} & {2} & {3} & {4} & {5} & {6} \ \\ {Freq} & {42} & {51} & {39} & {52} & {44} & {48} \ \end{array}[/tex]
Required
P(Even)
The even sides are: 2, 4, 6
So:
[tex]P(Even) = P(2) + P(4) + P(6)[/tex]
This is then calculated as:
[tex]P(Even) = \frac{n(2)}{Total} + \frac{n(4)}{Total} + \frac{n(6)}{Total}[/tex]
Replace n(2), n(4), n(6) with their frequencies
[tex]P(Even) = \frac{51}{Total} + \frac{52}{Total} + \frac{48}{Total}[/tex]
The total frequency is:
[tex]Total =42+51+39+52+44+48[/tex]
[tex]Total =276[/tex]
So:
[tex]P(Even) = \frac{51}{Total} + \frac{52}{Total} + \frac{48}{Total}[/tex]
[tex]P(Even) = \frac{51}{276} + \frac{52}{276} + \frac{48}{276}[/tex]
Take LCM
[tex]P(Even) = \frac{51+52+48}{276}[/tex]
[tex]P(Even) = \frac{151}{276}[/tex]
[tex]P(Even) = 0.547[/tex] --- approximated