Respuesta :

Answer:

[tex](x - (-4))^2 = -8(y - (-3))[/tex]

[tex]Where\ p<0[/tex]

Step-by-step explanation:

From the question we are told that:

Parabola  focus co-ordinates

[tex]F=(-4, -5)\\Directrix is y = -1[/tex]

Generally the equation for standard form of Parabola is mathematically given by

[tex](x - h)^2 = 4p(y - k)[/tex]

where p≠ 0

Generally the equation for Directrix of Parabola is mathematically given by

[tex]y=k-p\\y=-1[/tex]

Generally the equation for Focus of Parabola F is mathematically given by

[tex]F=(h, k + p).[/tex]

[tex]F=(-4, -5)[/tex]

Therefore

[tex]k-p=-1[/tex]

[tex]k=-1+p[/tex]

Given

[tex]k+p=-5[/tex]

[tex]-1+p+p=-5[/tex]

[tex]2p=-4[/tex]

[tex]p=-2[/tex]

Therefore

[tex]k-p=-1[/tex]

[tex]k-(-2)=-1[/tex]

[tex]k=-3[/tex]

Generally the equation for standard form of Parabola is mathematically given by

[tex](x - (-4))^2 = 4(-2)(y - (-3))[/tex]

[tex](x - (-4))^2 = -8(y - (-3))[/tex]

[tex]Where p<0[/tex]