Answer:
99% Confidence interval is given as;
Lower Limit = 0.062
Upper Limit = 0.130
Step-by-step explanation:
Given the data in the question;
x = 48
n = 500
sample proportion p = x/n = 48/500 = 0.096
with 99% confidence
significance level ∝ = 1 - 99% = 1 - 0.99 = 0.01
∝/2 = 0.01 / 2 = 0.005
Critical Z-value = [tex]Z_{\alpha /2[/tex] = [tex]Z_{0.005[/tex] = 2.576
Now,
Standard error of p : SE = √[ (p × ( 1 - p) / n ) ]
we substitute
SE = √[ (0.096 × ( 1 - 0.096) / 500 ) ]
SE = √[ (0.096 × 0.904) / 500 ]
SE = √[ 0.086784 / 500 ) ]
SE = 0.0131745
so
Margin of Error E = [tex]Z_{\alpha /2[/tex] × SE
E = 2.576 × 0.0131745
E = 0.0339
Now 99% confidence interval will be
⇒ 0.096 ± 0.0339
⇒ (0.096 - 0.0339, 0.096 + 0.0339 )
⇒ ( 0.062, 0.130 )
Lower Limit = 0.062
Upper Limit = 0.130