Answer:
The answer is "Option B".
Explanation:
[tex]\to CH_3COOH + NaOH \longleftrightarrow CH_3COONa + H_2O\\\\\to CH_3COONa + NaOH\longleftrightarrow CH3COONa\\\\\therefore \ mol\ NaOH = (5 \ E-3\ L)\times(0.10 \ \frac{mol}{L}) = 5 \ E-4\ mol\\\\[/tex]
[tex]\to mol\ CH_3COOH = (0.05 \ L)\times(0.20 \frac{mol}{L}) = 0.01 \ mol\\\\\to C \ CH_3COOH = \frac{(0.01 \ mol - 5 \ E-4\ mol) }{(0.105 \ L)}\\\\\to C \ CH_3COOH = 0.0905 \ M\\\\\therefore \ mol \ CH_3COONa = (0.05\ L )\times (0.20 \ \frac{mol}{L}) = 0.01 \ mol\\\\[/tex]
[tex]\to C \ CH_3COONa = \frac{(0.01\ mol + 5 \ E-4\ mol)}{(0.105\ L )}\\\\\to C \ CH_3COONa = 0.1 \ M\\\\\therefore Ka = ([H_3O^{+}]\times \frac{(0.1 + [H_3O^+]))}{(0.0905 - [H_3O^+])} = 1.75\ E-5\\\\\to 0.1[H_3O^+] + [H_3O^+]^2 = (1.75 E-5)\times (0.0905 - [H_3O^+])\\\\[/tex]
[tex]\to [H_3O^+]^2 \ 0.1[H_3O^+] = 1.584\ E-6 - 1.75\ E-5[H_3O^+]\\\\\to [H_3O^+]^2 + 0.1000175[H_3O^+] - 1.584 \ E-6 = 0\\\\\to [H_3O^+] = 1.5835\ E-5 \ M\\\\\therefore pH = - \log [H_3O^+]\\\\\to pH = - \log (1.5835 \ E-5)\\\\ \to pH = 4.8004 > 4.7[/tex]