Answer:
The distance between the post office and the library is 8 units
Explanation:
Given
[tex]P = (-20,22)[/tex] --- Post office
[tex]L = (-12,22)[/tex] --- Library
[tex]B = (-20,18)[/tex] ---- Bank
Required
The distance between the P and L
To do this, we simply calculate the distance between P and L using the distance formula;
[tex]d =\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}[/tex]
Where:
[tex]P = (-20,22)[/tex] --- [tex](x_1,y_1)[/tex]
[tex]L = (-12,22)[/tex] --- [tex](x_2,y_2)[/tex]
So, we have:
[tex]d =\sqrt{(-12 - -20)^2 + (22 - 22)^2}[/tex]
[tex]d =\sqrt{(8)^2 + 0^2}[/tex]
[tex]d =\sqrt{64 + 0}[/tex]
[tex]d =\sqrt{64}[/tex]
[tex]d =8[/tex]
The required distance is 8 units