Answer:
[tex]= 2x^{-6}y ^{21}\\\\[/tex]
Step-by-step explanation:
Given the indicinal expression (2x^2 y^-2 / y^5)^-3
In indices
[tex](x^m)^n = x^{mn[/tex]
Applying to solve the question
[tex](2x^2 y^{-2} / y^5)^{-3}\\\\= \frac{2x^{-6}y^6}{y^{-15}}\\= 2x^{-6} * \frac{y^6}{y^{-15}} \\= 2x^{-6} * y ^{6-(-15)}\\= 2x^{-6} * y ^{6+15}\\= 2x^{-6} * y ^{21}\\= 2x^{-6}y ^{21}\\\\[/tex]