Answer:
The answer is "294.2075".
Step-by-step explanation:
Given:
[tex]\hat{p} = 0.5 \\\\1 - \hat{p} = 1 - 0.5 = 0.5\\\\E = 4\% = 0.04\\\\[/tex]
At [tex]83\%[/tex] confidence level the z is ,
[tex]\alpha = 1 - 83\% = 1 - 0.83 = 0.17\\\\\frac{\alpha}{2} = \frac{0.17}{2} = 0.085\\\\Z_{\frac{\alpha}{2}} = Z_{0.085} = 1.3722\\\\n = (\frac{Z_{\frac{\alpha}{2}}}{E})^2 \times \hat{p} \times (1 - \hat{p})\\\\[/tex]
[tex]= (\frac{1.3722}{0.04})^2 \times 0.5 \times 0.5\\\\= (34.305)^2 \times 0.5 \times 0.5\\\\= 1,176.83 \times 0.5 \times 0.5\\\\= 1,176.83 \times 0.25\\\\=294.2075[/tex]