Answer:
[tex]Area = 45.82m^2[/tex]
Step-by-step explanation:
Given
[tex]d = 10m[/tex] --- diameter
[tex]\theta = 210^\circ[/tex]
Required
Determine the area of the sector
The ares of the sector is calculated as:
[tex]Area = \frac{\theta}{360} * \pi r^2[/tex]
Where
[tex]r = \frac{d}{2}[/tex]
This gives:
[tex]r = \frac{10m}{2} = 5m[/tex]
So, we have:
[tex]Area = \frac{210}{360} * 3.142 * 5^2[/tex]
[tex]Area = \frac{210}{360} * 78.55[/tex]
[tex]Area = \frac{210 * 78.55}{360}[/tex]
[tex]Area = \frac{16495.5}{360}[/tex]
[tex]Area = 45.82m^2[/tex]