I'll give brainliest

Given:
[tex]\angle a[/tex] and [tex]\angle b[/tex] are complementary angles.
[tex]\angle a=32^\circ[/tex]
To find:
The measure of [tex]\angle b[/tex].
Solution:
According to the definition of the complimentary angles, the sum of two complementary angles is always 90 degree.
It is given that, [tex]\angle a[/tex] and [tex]\angle b[/tex] are complementary angles. So,
[tex]\angle a+\angle b=90^\circ[/tex]
[tex]32^\circ+\angle b=90^\circ[/tex]
[tex]\angle b=90^\circ-32^\circ[/tex]
[tex]\angle b=58^\circ[/tex]
Therefore, the measure of [tex]\angle b[/tex] is 58°.