Directions: Find the complemen
ANGLE
EXAMPLE: 54°
1. 63°
2. 87°
3. 45°
4. 72°
5. 5°

Given:
The angles are:
Example [tex]54^\circ[/tex]
1. [tex]63^\circ[/tex]
2. [tex]87^\circ[/tex]
3. [tex]45^\circ[/tex]
4. [tex]72^\circ[/tex]
5. [tex]5^\circ[/tex]
To find:
The complimentary angle of the given angles.
Solution:
If two angles are complimentary, then their sum is 90 degrees.
Example: Let x be the complimentary angle of [tex]54^\circ[/tex], then
[tex]x+54^\circ=90^\circ[/tex]
[tex]x=90^\circ -54^\circ[/tex]
[tex]x=36^\circ[/tex]
Similarly,
1. The complimentary angle of [tex]63^\circ[/tex] is:
[tex]90^\circ -63^\circ=27^\circ[/tex]
2. The complimentary angle of [tex]87^\circ[/tex] is:
[tex]90^\circ -87^\circ=3^\circ[/tex]
3. The complimentary angle of [tex]45^\circ[/tex] is:
[tex]90^\circ -45^\circ=45^\circ[/tex]
4. The complimentary angle of [tex]72^\circ[/tex] is:
[tex]90^\circ -72^\circ=18^\circ[/tex]
5. The complimentary angle of [tex]5^\circ[/tex] is:
[tex]90^\circ -5^\circ=85^\circ[/tex]
Therefore, the complimentary angles of [tex]54^\circ, 63^\circ, 87^\circ, 45^\circ, 72^\circ, 5^\circ[/tex] are [tex]36^\circ, 27^\circ, 3^\circ, 45^\circ, 18^\circ, 85^\circ[/tex] respectively.