Respuesta :

Given:

The angles are:

Example [tex]54^\circ[/tex]

1. [tex]63^\circ[/tex]

2. [tex]87^\circ[/tex]

3. [tex]45^\circ[/tex]

4. [tex]72^\circ[/tex]

5. [tex]5^\circ[/tex]

To find:

The complimentary angle of the given angles.

Solution:

If two angles are complimentary, then their sum is 90 degrees.

Example: Let x be the complimentary angle of [tex]54^\circ[/tex], then

[tex]x+54^\circ=90^\circ[/tex]

[tex]x=90^\circ -54^\circ[/tex]

[tex]x=36^\circ[/tex]

Similarly,

1. The complimentary angle of [tex]63^\circ[/tex] is:

[tex]90^\circ -63^\circ=27^\circ[/tex]

2. The complimentary angle of [tex]87^\circ[/tex] is:

[tex]90^\circ -87^\circ=3^\circ[/tex]

3. The complimentary angle of [tex]45^\circ[/tex] is:

[tex]90^\circ -45^\circ=45^\circ[/tex]

4. The complimentary angle of [tex]72^\circ[/tex] is:

[tex]90^\circ -72^\circ=18^\circ[/tex]

5. The complimentary angle of [tex]5^\circ[/tex] is:

[tex]90^\circ -5^\circ=85^\circ[/tex]

Therefore, the complimentary angles of [tex]54^\circ, 63^\circ, 87^\circ, 45^\circ, 72^\circ, 5^\circ[/tex] are [tex]36^\circ, 27^\circ, 3^\circ, 45^\circ, 18^\circ, 85^\circ[/tex] respectively.