Respuesta :

Given:

The given function is:

[tex]f(x)=11x-11[/tex]

To find:

The value of [tex](f\circ f^{-1})(-11)[/tex].

Solution:

We have,

[tex]f(x)=11x-11[/tex]

First we have to find the inverse of this function.

Putting f(x)=y, we get

[tex]y=11x-11[/tex]

Interchange x and y.

[tex]x=11y-11[/tex]

Isolate the variable y.

[tex]x+11=11y[/tex]

[tex]\dfrac{x+11}{11}=y[/tex]

[tex]y=\dfrac{x+11}{11}[/tex]

Putting [tex]y=f^{-1}(x)[/tex], we get

[tex]f^{-1}(x)=\dfrac{x+11}{11}[/tex]

Now,

[tex](f\circ f^{-1})(-11)=f(f^{-1}(-11))[/tex]

[tex](f\circ f^{-1})(-11)=f\left(\dfrac{-11+11}{11}\right)[/tex]        [tex]\left[\because f^{-1}(x)=\dfrac{x+11}{11}\right][/tex]

[tex](f\circ f^{-1})(-11)=f\left(\dfrac{0}{11}\right)[/tex]

[tex](f\circ f^{-1})(-11)=f\left(0\right)[/tex]

The given function is [tex]f(x)=11x-11[/tex].

[tex](f\circ f^{-1})(-11)=11(0)-11[/tex]

[tex](f\circ f^{-1})(-11)=-11[/tex]

Therefore, the value of [tex](f\circ f^{-1})(-11)[/tex] is [tex]-11[/tex]. Hence the correct option is A.