Respuesta :

Given:

An exponential equation passes through the points (0,4) and (2,9).

To find:

Exponential equation that passes through the given points.

Solution:

Let the required exponential function is:

[tex]y=ab^x[/tex]           ...(i)

The function passes through the points (0,4) and (2,9). It means the above equation must be true for these points.

[tex]4=ab^0[/tex]

[tex]4=a(1)[/tex]

[tex]4=a[/tex]

And,

[tex]9=ab^2[/tex]

Substituting [tex]a=4[/tex], we get

[tex]9=(4)b^2[/tex]

[tex]\dfrac{9}{4}=b^2[/tex]

[tex]\pm \sqrt{\dfrac{9}{4}}=b[/tex]

[tex]\pm \dfrac{3}{2}=b[/tex]

In an exponential function b>0. So, [tex]b=\dfrac{3}{2}[/tex].

Putting [tex]a=4,b=\dfrac{3}{2}[/tex] in (i), we get

[tex]y=4\left(\dfrac{3}{2}\right)^x[/tex]

Therefore, the required exponential function is [tex]y=4\left(\dfrac{3}{2}\right)^x[/tex].