Respuesta :

Answer:

[tex]Rate = -2h-1[/tex]

Step-by-step explanation:

Given

[tex]f(x) = -2x^2 + 3x - 7[/tex]

[tex]Interval: [1,1+h][/tex]

Required

The average rate of change

This is calculated as:

[tex]Rate = \frac{f(b) - f(a)}{b - a}[/tex]

Where:

[tex][a,b] = [1,1+h][/tex]

So, we have:

[tex]Rate = \frac{f(1+h) - f(1)}{1+h - 1}[/tex]

[tex]Rate = \frac{f(1+h) - f(1)}{h}[/tex]

Calculate f(1+h) and f(1)

[tex]f(x) = -2x^2 + 3x - 7[/tex]

[tex]f(1) = -2 * 1^2 + 3 * 1 - 7 = -6[/tex]

[tex]f(1+h) = -2 * (1+h)^2 + 3 * (1+h) - 7[/tex]

Evaluate squares and open bracket

[tex]f(1+h) = -2 * (1+h+h+h^2) + 3+3h - 7[/tex]

[tex]f(1+h) = -2-2h-2h-2h^2 + 3+3h - 7[/tex]

[tex]f(1+h) = -2-4h-2h^2 + 3+3h - 7[/tex]

Collect like terms

[tex]f(1+h) = -2h^2-4h +3h-2+ 3 - 7[/tex]

[tex]f(1+h) = -2h^2-h-6[/tex]

So, we have:

[tex]Rate = \frac{f(1+h) - f(1)}{h}[/tex]

[tex]Rate = \frac{-2h^2-h-6 - -6}{h}[/tex]

[tex]Rate = \frac{-2h^2-h-6 +6}{h}[/tex]

[tex]Rate = \frac{-2h^2-h}{h}[/tex]

Factorize the numerator

[tex]Rate = \frac{h(-2h-1)}{h}[/tex]

Divide

[tex]Rate = -2h-1[/tex]