contestada

A gear with a diameter of 12.0 inches makes 35 revolutions every three minutes. Find the linear and angular velocities of a point on the outer edge of the gear. Give your answers in both exact and approximate forms.

Respuesta :

Answer:

Angular velocity: [tex]\omega = \frac{7\pi}{18} \,\frac{rad}{s}[/tex] ([tex]1.222\,\frac{rad}{s}[/tex])

Linear velocity: [tex]v = \frac{14\pi}{3}\,\frac{m}{s}[/tex] ([tex]14.661\,\frac{m}{s}[/tex])

Step-by-step explanation:

The gear experiments a pure rotation with axis passing through its center, the angular ([tex]\omega[/tex]), in radians per second, and linear velocities ([tex]v[/tex]), in inches per second, of a point on the outer edge of the element are, respectively:

[tex]\omega = \frac{2\pi}{60}\cdot \dot n[/tex] (1)

[tex]v = R\cdot \omega[/tex] (2)

Where:

[tex]\dot n[/tex] - Rotation rate, in revolutions per minute.

[tex]R[/tex] - Radius of the gear, in inches.

If we know that [tex]\dot n = \frac{35}{3}\,\frac{rev}{min}[/tex] and [tex]R = 12\,in[/tex], then the linear and angular velocities of the gear are, respectively:

[tex]\omega = \frac{2\pi}{60}\cdot \dot n[/tex]

[tex]\omega = \frac{7\pi}{18} \,\frac{rad}{s}[/tex] ([tex]1.222\,\frac{rad}{s}[/tex])

[tex]v = R\cdot \omega[/tex]

[tex]v = \frac{14\pi}{3}\,\frac{m}{s}[/tex] ([tex]14.661\,\frac{m}{s}[/tex])