30 points and Brainliest!
Given: ΔLFP, LF = FP LK ⊥ FP , PD ⊥ LF Prove: LK = PD
Please provide proof and the rule (AAA, ASA, etc.) as well.

30 points and Brainliest Given ΔLFP LF FP LK FP PD LF Prove LK PD Please provide proof and the rule AAA ASA etc as well class=

Respuesta :

Answer:

LF = PF                   given

ΔLFP is isosceles   definition of isosceles triangle

∠FLP = ∠FPL          isosceles triangle theorem: if two sides of a triangle are

                               congruent, then angles opposite those sides are

                               congruent.

LP = PL                    reflexive property

∠PDL = ∠LKP          Perpendicular lines postulate (perpendicular lines form 90

                                degree angles)

ΔPDL ≅ ΔLKP         AAS

LK = PD                    corresponding parts of congruent triangles are congruent