Given the function h(x) = -x2 -X2 – 5x + 8, determine the average rate of change of the function over the interval -4 < x < -2​

Respuesta :

leena

Hi there!

[tex]\large\boxed{\text{Average rate = 1}}[/tex]

We can calculate the average rate of change using the following:

[tex]ARC = \frac{f(b)-f(a)}{b-a}[/tex]

Thus, we can plug in the endpoints of -4 and -2. Find the corresponding y-values for these x-values:

f(-2) = -(-2)² - 5(-2) + 8  = -4 + 10 + 8 = 14

f(-4) = -(-4)² - 5(-4) + 8 = -16 + 20 + 8 = 12

Plug in the solved for values into the ARC equation:

[tex]ARC(slope) = \frac{14-12}{-2(-4)} = \frac{2}{2} = 1[/tex]