Answer:
[tex]k_2=9.06x10^{-4}/s[/tex]
Explanation:
Hello there!
In this case, since the activation energy, rate law and temperature, when variable, are related to each other as shown below:
[tex]ln(\frac{k_2}{k_1} )=\frac{-Ea}{R}(\frac{1}{T_2} -\frac{1}{T_1} )[/tex]
Thus, when solving for the rate constant at 682 K, we will obtain:
[tex]ln(\frac{k_2}{2.77x10^{-4}/s} )=\frac{-105000J/mol}{8.3145\frac{J}{mol*K}}(\frac{1}{682K} -\frac{1}{641K} ) \\\\ln(\frac{k_2}{2.77x10^{-4}/s} )=1.184\\\\\frac{k_2}{2.77x10^{-4}/s}=exp(1.184)\\\\k_2=2.77x10^{-4}/s*3.269\\\\k_2=9.06x10^{-4}/s[/tex]
Best regards!