Respuesta :

Answer:

[tex]x =2[/tex]

[tex]y =2[/tex]

Step-by-step explanation:

Given

[tex]9x^2 + 4(y - 2)^2 = 36[/tex]

[tex]x^2 = 2y[/tex]

Required

Solve

Substitute:  [tex]x^2 = 2y[/tex] in [tex]9x^2 + 4(y - 2)^2 = 36[/tex]

[tex]9*2y + 4(y-2)^2 = 36[/tex]

[tex]18y + 4(y-2)^2 = 36[/tex]

Open bracket

[tex]18y + 4[y^2-2y - 2y + 4] = 36[/tex]

[tex]18y + 4[y^2-4y + 4] = 36[/tex]

Open bracket

[tex]18y + 4y^2-16y + 16 = 36[/tex]

Collect like terms

[tex]4y^2+18y-16y + 16 - 36 = 0[/tex]

[tex]4y^2+2y-20= 0[/tex]

Divide through by 2

[tex]2y^2+y-10= 0[/tex]

Expand

[tex]2y^2+5y - 4y-10= 0[/tex]

Factorize

[tex]y(2y + 5) - 2(2y + 5) = 0[/tex]

Factor out 2y + 5

[tex](y -2)(2y + 5) = 0[/tex]

Split

[tex]y - 2 =0\ or\ 2y + 5 = 0[/tex]

Solve for y

[tex]y =2 \ or\y = -\frac{5}{2}[/tex]

We have:

[tex]x^2 = 2y[/tex]

Make x the subject

[tex]x = \sqrt{2y[/tex]

The above is true for positive y values.

So: [tex]y =2[/tex]

This gives

[tex]x = \sqrt{2*2[/tex]

[tex]x = \sqrt{4[/tex]

[tex]x =2[/tex]