Answer: [tex](7,\frac{\pi}{2})[/tex]
Step-by-step explanation:
Given
The equation of the circle is [tex]x^2+y^2=r^2[/tex]
Point [tex](0,7)[/tex] lies on the circle
Put the value
[tex]\Rightarrow 0^2+7^2=r^2\\\Rightarrow r=7\ \text{units}[/tex]
for this point, the angle is given by
[tex]\Rightarrow \tan \theta=\dfrac{y}{x}\\\\\Rightarrow \tan \theta=\dfrac{7}{0}\rightarrow \infty[/tex]
That is [tex]\theta \rightarrow 90^{\circ}[/tex]
The polar coordinate is given by [tex](r,\theta)[/tex]
[tex]\therefore\ (7,90^{\circ})\ \text{or}\ (7,\frac{\pi}{2})[/tex]