11
The coordinates of the triangle are A(0, 3), B(6,0), C(0, -3), determine the coordinates of its
image after a dilation of 1/3 as a scale factor. *
(2 Points)
O A'(0, -3), B'(-6, 0), C'(0,3)
O A'(0, 1), B (2.0), C'(0, -1)
O A'(0, -1), B'(-2, 0), C'(0, 1)

Respuesta :

Answer:

[tex]A' = (0 ,1)[/tex]

[tex]B' = (2,0)[/tex]

[tex]C' = (0,-1)[/tex]

Step-by-step explanation:

Given

[tex]A = (0,3)[/tex]

[tex]B =(6,0)[/tex]

[tex]C = (0,-3)[/tex]

[tex]k =\frac{1}{3}[/tex]

Required

The new coordinates

The new coordinate is calculated as:

New = Old * Scale factor

So, we have:

[tex]A' = A * k[/tex]

[tex]A' = (0,3) * \frac{1}{3}[/tex]

Expand

[tex]A' = (0 * \frac{1}{3},3 * \frac{1}{3})[/tex]

[tex]A' = (0 ,1)[/tex]

[tex]B' = B * k[/tex]

[tex]B' = (6,0) * \frac{1}{3}[/tex]

[tex]B' = (6 * \frac{1}{3},0 * \frac{1}{3})[/tex]

[tex]B' = (2,0)[/tex]

[tex]C' = C * k[/tex]

[tex]C' = (0,-3) * \frac{1}{3}[/tex]

[tex]C' = (0* \frac{1}{3},-3* \frac{1}{3})[/tex]

[tex]C' = (0,-1)[/tex]