Answer:
[tex]A' = (0 ,1)[/tex]
[tex]B' = (2,0)[/tex]
[tex]C' = (0,-1)[/tex]
Step-by-step explanation:
Given
[tex]A = (0,3)[/tex]
[tex]B =(6,0)[/tex]
[tex]C = (0,-3)[/tex]
[tex]k =\frac{1}{3}[/tex]
Required
The new coordinates
The new coordinate is calculated as:
New = Old * Scale factor
So, we have:
[tex]A' = A * k[/tex]
[tex]A' = (0,3) * \frac{1}{3}[/tex]
Expand
[tex]A' = (0 * \frac{1}{3},3 * \frac{1}{3})[/tex]
[tex]A' = (0 ,1)[/tex]
[tex]B' = B * k[/tex]
[tex]B' = (6,0) * \frac{1}{3}[/tex]
[tex]B' = (6 * \frac{1}{3},0 * \frac{1}{3})[/tex]
[tex]B' = (2,0)[/tex]
[tex]C' = C * k[/tex]
[tex]C' = (0,-3) * \frac{1}{3}[/tex]
[tex]C' = (0* \frac{1}{3},-3* \frac{1}{3})[/tex]
[tex]C' = (0,-1)[/tex]