Respuesta :

Nayefx

Answer:

[tex] \displaystyle \rm x \cos(a) + \sin(a) \ln\left( | \sin(x) | \right) + C[/tex]

Step-by-step explanation:

we would like to integrate the following integration:

[tex] \displaystyle \int \frac{ \sin(x + a) }{ \sin(x) } dx[/tex]

we can rewrite the denominator by using algebraic identity given by:

[tex] \displaystyle \rm\sin( \alpha \pm \beta ) = \sin( \alpha ) \cos( \beta ) \pm \cos( \alpha ) \sin( \beta ) [/tex]

thus substitute:

[tex] \displaystyle \int \frac{ \sin(x ) \cos(a) + \cos(x) \sin(a) } { \sin(x) } dx[/tex]

we should rewrite integrand as sum therefore we can use sum integration formula

[tex] \displaystyle \rm\int \frac{ \sin(x ) \cos(a) } { \sin(x) } + \frac{ \cos(x) \sin( \alpha ) } { \sin(x) } dx[/tex]

use sum integration formula:

[tex] \displaystyle \rm\int \frac{ \sin(x ) \cos(a) } { \sin(x) } dx + \int \frac{ \cos(x) \sin( \alpha ) } { \sin(x) } dx[/tex]

reduce fraction:

[tex] \displaystyle \rm\int \cos(a) dx + \int \frac{ \cos(x) \sin( \alpha ) } { \sin(x) } dx[/tex]

rewrite:

[tex] \displaystyle \rm\int \cos(a) dx + \int \frac{ \cos(x) } { \sin(x) } \cdot \sin( a) dx[/tex]

use trigonometric indentity:

[tex] \displaystyle \rm\int \cos(a) dx + \int \cot(x) \cdot \sin( a) dx[/tex]

use constant integration formula

[tex] \displaystyle \rm\int \cos(a) dx + \sin(a) \int \cot(x) dx[/tex]

use integration rules:

[tex] \displaystyle \rm x \cos(a) + \sin(a) \ln\left( | \sin(x) | \right)[/tex]

and finally we of course have to add constant of integration

[tex] \displaystyle \rm x \cos(a) + \sin(a) \ln\left( | \sin(x) | \right) + C[/tex]

And we are done!

[tex]\text{Note:I used integration by substitution to figure out }\\\displaystyle \int \cot(x)dx \:\text{part}[/tex]