contestada

Find the possible values of k if one of the roots of the quadratic equation x^2 - kx + 8 = 0 is twice the other.​

Respuesta :

Answer:

[tex]k=\pm 6[/tex]

Step-by-step explanation:

The given quadratic equation is :

[tex]x^2 - kx + 8 = 0[/tex]

One of the roots of this equation is twice that of the other. Let the roots are [tex]\alpha \ and\ \beta[/tex], [tex]\alpha =2\beta[/tex]

Sum of roots, [tex]\alpha +\beta =\dfrac{-b}{a}[/tex]

[tex]\alpha +\beta =\dfrac{-(-k)}{1}\\\\\alpha +\beta =k\\\\3\beta =k\ .......(1)[/tex]

Product of roots,

[tex]\alpha \beta =\dfrac{c}{a}\\\\2\beta ^2=\dfrac{8}{1}\\\\\beta =\pm 2[/tex]

If [tex]\beta =\pm2[/tex],

[tex]k=3(2)\\\\=\pm 6[/tex]

So, the value of k is equal to [tex]\pm 6[/tex].