Respuesta :

Given:

The equation is:

[tex]\log_{(x-2)}(x^2-4x-6)=\dfrac{4}{5}[/tex]

To find:

The exponential equation of the given logarithmic equation.

Solution:

We have,

[tex]\log_{(x-2)}(x^2-4x-6)=\dfrac{4}{5}[/tex]

According to property of logarithm,

[tex]\log_ax=b\Leftrightarrow x=a^b[/tex]

Using the property of logarithm, we get

[tex]x^2-4x-6=(x-2)^{\frac{4}{5}}[/tex]

Therefore, the required exponential equation is [tex]x^2-4x-6=(x-2)^{\frac{4}{5}}[/tex].