Respuesta :

Given:

The quadratic equation is:

[tex]x^2+13x+k=0[/tex]

[tex]x_1=-9[/tex]

To find:

The value of k and [tex]x_1[/tex].

Solution:

We have,

[tex]x^2+13x+k=0[/tex]                ...(i)

Putting [tex]x=-9[/tex], we get

[tex](-9)^2+13(-9)+k=0[/tex]

[tex]81-117+k=0[/tex]

[tex]-36+k=0[/tex]

[tex]k=36[/tex]

Putting [tex]k=36[/tex] in (i), we get

[tex]x^2+13x+36=0[/tex]

Splitting the middle term, we get

[tex]x^2+9x+4x+36=0[/tex]

[tex]x(x+9)+4(x+9)=0[/tex]

[tex](x+9)(x+4)=0[/tex]

[tex]x=-9,-4[/tex]

Here, [tex]x_1=-9[/tex] and [tex]x_2=-4[/tex].

Therefore, the required values are [tex]k=36[/tex] and [tex]x_2=-4[/tex].