Answer:
The terms in Pattern B are 2 times the corresponding terms in Pattern A
Step-by-step explanation:
Given
Pattern A
[tex]Start = 0[/tex]
[tex]Rule: Add\ 5[/tex]
Pattern B
[tex]Start = 0[/tex]
[tex]Rule: Add\ 10[/tex]
Required
The relationship between both patterns
First, we calculate the nth term of both pattern.
For A
[tex]A(n) = Start + Rule[/tex]
[tex]A(n) = 0 + 5n[/tex]
[tex]A(n) = 5n[/tex]
For B
[tex]B(n) = Start + Rule[/tex]
[tex]B(n) = 0 + 10n[/tex]
[tex]B(n) = 10n[/tex]
So, we have:
[tex]A(n) = 5n[/tex]
[tex]B(n) = 10n[/tex]
B(n) can be expressed as:
[tex]B(n)=2* 5n[/tex]
Substitute [tex]A(n) = 5n[/tex]
[tex]B(n)=2* A(n)[/tex]
This means that the term of B(n) is twice the corresponding term of A(n)