Answer:
(f∘g)(−4) = 12
Step-by-step explanation:
Given the functions
f(x)= 3x^2 + 4x - 3
g(x) = -2x-11
Required
(f∘g)(−4)
(f∘g)(x) = f(g(x))
f(g(x)) = f(-2x-11)
f(-2x-11) = 3(-2x-11)^2 + 4(-2x-11) - 3
f(g(x)) = 3(-2x-11)^2 + 4(-2x-11) - 3
f(g(-4)) = 3(-2(-4)-11)^2 + 4(-2(-4)-11) -3
f(g(-4)) = 3(8-11)^2 + 4(8-11) - 3
f(g(-4)) = 3(-3)^2 + 4(-3) - 3
f(g(-4)) = 3(9) - 12 - 3
f(g(-4)) = 27 - 15
f(g(-4)) = 12
Hence (f∘g)(−4) = 12