Answer:
(a) Verified
(b) They are simultaneous equations
Step-by-step explanation:
Given
[tex]2x - y = -1[/tex]
[tex]y =5x - 5[/tex]
Required
Verify that: [tex](x,y) = (2,5)[/tex] is a solution
We have:
[tex]2x - y = -1[/tex]
Substitute: [tex](x,y) = (2,5)[/tex]
[tex]2 * 2 - 5 = -1[/tex]
Evaluate all products
[tex]4 - 5 = -1[/tex]
Subtract:
[tex]-1 = -1[/tex]
Because both sides of the equation are equal, then the point is a solution
Also: [tex]y =5x - 5[/tex]
Substitute: [tex](x,y) = (2,5)[/tex]
[tex]5 = 5 * 2 - 5[/tex]
Evaluate all products
[tex]5 = 10 - 5[/tex]
Subtract:
[tex]5 = 5[/tex]
Because both sides of the equation are equal, then the point is a solution
Because the given point is a solution to both equations, then they are simultaneous equation