Respuesta :
Answer:
Identities used:
- 1/cosθ = secθ
- 1/sinθ = cosecθ
- sinθ/cosθ = tanθ
- cosθ/sinθ = cotθ
- sin²θ + cos²θ = 1
Question 1
- (1 - sinθ)/(1 + sinθ) =
- (1 - sinθ)(1 - sinθ) / (1 - sinθ)(1 + sinθ) =
- (1 - sinθ)² / (1 - sin²θ) =
- (1 - sinθ)² / cos²θ
Square root of it is:
- (1 - sinθ)/ cosθ =
- 1/cosθ - sinθ / cosθ =
- secθ - tanθ
Question 2
The first part without root:
- (1 + cosθ) / (1 - cosθ) =
- (1 + cosθ)(1 + cosθ) / (1 - cosθ)(1 + cosθ)
- (1 + cosθ)² / (1 - cos²θ) =
- (1 + cosθ)² / sin²θ
Its square root is:
- (1 + cosθ) / sinθ =
- 1/sinθ + cosθ/sinθ =
- cosecθ + cotθ
The second part without root:
- (1 - cosθ) / (1 + cosθ) =
- (1 - cosθ)²/ (1 + cosθ)(1 - cosθ) =
- (1 - cosθ)²/ (1 - cos²θ) =
- (1 - cosθ)²/sin²θ
Its square root is:
- (1 - cosθ) / sinθ =
- 1/sinθ - cosθ / sinθ =
- cosecθ - cotθ
Sum of the results:
- cosecθ + cotθ + cosecθ - cotθ =
- 2cosecθ
Step-by-step explanation:
Question 1:
Consider the left-hand side
[tex] \sqrt{ \frac{ 1 - \sin\theta }{1 + \sin\theta} } = \sqrt{ \frac{ 1 - \sin\theta }{1 + \sin\theta} \times \frac{1 - \sin\theta }{1 - \sin\theta } }[/tex]
[tex] = \sqrt{ \frac{ {(1 - \sin\theta )}^{2} }{(1 - { \sin}^{2}\theta) } } = \frac{1 - \sin\theta }{ \cos\theta} [/tex]
[tex] = \frac{1}{ \cos\theta} - \frac{ \sin\theta}{\cos\theta } [/tex]
[tex] = \sec\theta \: - \tan\theta[/tex]
Question 2:
The left-hand side can be rewritten as
[tex] \sqrt{\frac{1+ \cos \theta}{1- \cos\theta} \times \frac{1+ \cos \theta}{1+ \cos \theta} } \: +\sqrt{\frac{1- \cos\theta}{1+ \cos \theta} \times \frac{1 - \cos \theta}{1 - \cos \theta} }[/tex]
[tex] = \frac{1 + \cos\theta}{ \sin\theta} + \frac{1 - \cos\theta}{ \sin\theta}[/tex]
[tex] = \frac{2}{ \sin\theta } = 2 \csc\theta[/tex]