Let f(x) = x ^ 3 - x ^ 2 - 5x - 3 and g(x) = x + 3 3. Find (f/g)(x) . a .) x ^ 2 - 4x + 7R - 24
b .) x ^ 2 - 4x + 7
C.) x ^ 2 - 4x - 7R - 24
d.) x ^ 2 - 4x + 7x

Respuesta :

Answer:

[tex](\frac{f}{g})(x) = \frac{\left(x+1\right)^2\left(x-3\right)}{x + 3}[/tex]

Step-by-step explanation:

The question is not properly formatted.

Given

[tex]f(x) = x^3 - x^2 - 5x - 3[/tex]

[tex]g(x) =x + 3[/tex]

Required

[tex](\frac{f}{g})(x)[/tex]

This is calculated as:

[tex](\frac{f}{g})(x) = \frac{f(x)}{g(x)}[/tex]

So, we have:

[tex](\frac{f}{g})(x) = \frac{x^3 - x^2 - 5x - 3}{x + 3}[/tex]

Factorize the numerator: using a calculator

[tex](\frac{f}{g})(x) = \frac{\left(x+1\right)^2\left(x-3\right)}{x + 3}[/tex]