Answer:
[tex](\frac{f}{g})(x) = \frac{\left(x+1\right)^2\left(x-3\right)}{x + 3}[/tex]
Step-by-step explanation:
The question is not properly formatted.
Given
[tex]f(x) = x^3 - x^2 - 5x - 3[/tex]
[tex]g(x) =x + 3[/tex]
Required
[tex](\frac{f}{g})(x)[/tex]
This is calculated as:
[tex](\frac{f}{g})(x) = \frac{f(x)}{g(x)}[/tex]
So, we have:
[tex](\frac{f}{g})(x) = \frac{x^3 - x^2 - 5x - 3}{x + 3}[/tex]
Factorize the numerator: using a calculator
[tex](\frac{f}{g})(x) = \frac{\left(x+1\right)^2\left(x-3\right)}{x + 3}[/tex]