Marsha wants to determine the vertex of the quadratic function f(x) = x2 – x + 2. What is the function’s vertex?

(one-half, seven-quarters)
(one-half, three-halves)
(1, 1)
(1, 3)

Respuesta :

Answer:

[tex]Vertex = (\frac{1}{2},\frac{7}{4})[/tex]

Step-by-step explanation:

Given

[tex]f(x) = x^2 - x +2[/tex]

Required

The vertex

We have:

[tex]f(x) = x^2 - x +2[/tex]

First, we express the equation as:

[tex]f(x) = a(x - h)^2 +k[/tex]

Where

[tex]Vertex = (h,k)[/tex]

So, we have:

[tex]f(x) = x^2 - x +2[/tex]

--------------------------------------------

Take the coefficient of x: -1

Divide by 2: (-1/2)

Square: (-1/2)^2

Add and subtract this to the equation

--------------------------------------------

[tex]f(x) = x^2 - x +2[/tex]

[tex]f(x) = x^2 - x + (-\frac{1}{2})^2+2 -(-\frac{1}{2})^2[/tex]

[tex]f(x) = x^2 - x + \frac{1}{4}+2 -\frac{1}{4}[/tex]

Expand

[tex]f(x) = x^2 - \frac{1}{2}x- \frac{1}{2}x + \frac{1}{4}+2 -\frac{1}{4}[/tex]

Factorize

[tex]f(x) = x(x - \frac{1}{2})- \frac{1}{2}(x - \frac{1}{2})+2 -\frac{1}{4}[/tex]

Factor out x - 1/2

[tex]f(x) = (x - \frac{1}{2})(x - \frac{1}{2})+2 -\frac{1}{4}[/tex]

[tex]f(x) = (x - \frac{1}{2})^2+2 -\frac{1}{4}[/tex]

[tex]f(x) = (x - \frac{1}{2})^2+ \frac{8 -1 }{4}[/tex]

[tex]f(x) = (x - \frac{1}{2})^2+ \frac{7}{4}[/tex]

Compare to: [tex]f(x) = a(x - h)^2 +k[/tex]

[tex]h = \frac{1}{2}[/tex]

[tex]k = \frac{7}{4}[/tex]

Hence:

[tex]Vertex = (\frac{1}{2},\frac{7}{4})[/tex]

Question: Marsha wants to determine the vertex of the quadratic function f(x) = x2 – x + 2. What is the function’s vertex?

Answer:  A or 1/2 , 7/4

Step-by-step explanation:

did it on an assignment on EDGE