Respuesta :

Answer:

See below

Step-by-step explanation:

Finding a:

[tex]\displaystyle sin (\theta) = \frac{opposite }{hypotenuse}[/tex]

Where θ = 45° , opposite = a, hyp = 4√2

[tex]\displaystyle sin (45)=\frac{a}{4\sqrt{2} } \\\\\frac{1}{\sqrt{2} } = \frac{a}{4\sqrt{2} } \\\\1 = \frac{a}{4} \\\\\boxed{a = 4}[/tex]

Finding c:

[tex]\displaystyle tan (\theta) = \frac{opposite }{adjacent}[/tex]

Where θ = 45°, opposite = 4, adjacent = c

tan 45 = 4 / c

1 = 4 / c

Multiply both sides by c

c = 4

Finding b:

[tex]\displaystyle sin(\theta) = \frac{opposite}{hypotenuse}[/tex]

Where θ = 30°, opposite = a(4), hypotenuse = b

sin 30 = 4 / b

[tex]\displaystyle \frac{1}{2} = \frac{4}{b}[/tex]

Cross Multiply

1 * b = 4 * 2

b = 8

Finding d:

[tex]\displaystyle tan (\theta) = \frac{opposite }{adjacent}[/tex]

Where θ = 30°, opposite = a(4) , adjacent = d

tan 30 = 4 / d

[tex]\displaystyle \frac{1}{\sqrt{3} } = \frac{4}{d} \\\\[/tex]

Cross Multiplying

1 * d = 4√3

[tex]\boxed{d = 4\sqrt{3}}[/tex]

[tex]\rule[225]{225}{2}[/tex]

Hope this helped!

~AH1807