Find the orthocenter& circumcenter of a triangle when their vertices are A(1, 2), B(2, 6), C(3,-4).
=> Please don't spam or answer Irrelevantly.​

Respuesta :

msm555

Note:

Ortho centre :a point of intersection of altitudes of a triangle meets the opposite angle.

Given:

For Orthocentre:.

A(1, 2), B(2, 6), C(3,-4). are vertices of a triangle:

Slope of AB[m1]=[tex] \frac{6-2}{2-1} [/tex]=4

Since it is perpendicular to CX.

slope of CX=m2

we have for slope of perpendicular

m1m2=-1

m2=-¼

It passes through the point C(3,-4)

equation of line CX becomes;

(y-y1)=m(x-x1)

y+4=-¼(x-3)

4y+16=-x+3

x+4y+16-3=0

x+4y+13=0........[1]

again:

Slope of AC[m1]=[tex] \frac{-4-2}{3-1} [/tex]=-3

Since it is perpendicular to BY

slope of BY=m2

we have for slope of perpendicular

m1m2=-1

m2=⅓

It passes through the point B(2,6)

equation of line BY becomes;

(y-y1)=m(x-x1)

y-6=⅓(x-2)

3y-18=x-2

x-3y+18-2=0

x-3y+16=0.........[2]

Subtracting equation 1&2.

x+4y+13=0

x-3y+16=0

-__________

7y-3=0

y=[tex] \frac{3}{7} [/tex]

again

Substituting value of y in equation 1.

x+4*[tex] \frac{3}{7} [/tex]+13=0

x=-13-[tex] \frac{12}{7} [/tex]

x=[tex] \frac{-103}{7} [/tex]=-14[tex] \frac{5}{7} [/tex]

So

orthocenter is (-14[tex] \frac{5}{7} [/tex],[tex] \frac{3}{7}[/tex])

And for circumcenter.

Circumcentre: a point of intersection of perpendicular bisector of the triangle.

Now

X,Y and Z are the midpoint of AB,AC and BC respectively.

X(a,b)=([tex] \frac{2+1}{2} [/tex],[tex] \frac{2+6}{2} [/tex])=

([tex] \frac{3}{2} [/tex],4)

Slope of AB=4

Slope of OX=-¼

Equation of line OX passes through ([tex] \frac{3}{2} [/tex],4)is

y-4=-¼(x-[tex] \frac{3}{2} [/tex])

4y-16=-x+[tex] \frac{3}{2} [/tex]

8y-16*2=-2x+3

2x+8y=3+32

2x+8y=35

x+4y=[tex] \frac{35}{2} [/tex]........[1]

again

Y(c,d)=([tex] \frac{3+1}{2} [/tex],[tex] \frac{-4+2}{2} [/tex]=(2,-1)

Slope of AC:-3

Slope of OY=⅓

Equation of line OY passes through (2,-1) is

y+1=⅓(x-2)

3y+3=x-2

x-3y=3+2

x-3y=5......[2]

Multiplying equation 2 by 3 and

Subtracting equation 1&2.

x+4y=35/2

x-3y=5

-_______

7y=[tex] \frac{25}{2} [/tex]

y=[tex] \frac{25}{14} [/tex]

Substituting value of y in equation 2.

x-3*[tex] \frac{25}{14} [/tex]=5

x=5+[tex] \frac{75}{14} [/tex]

x=[tex] \frac{145}{14} [/tex]

x=10[tex] \frac{5}{14} [/tex]

circumcenter of a triangle: (10[tex] \frac{5}{14} [/tex],1[tex] \frac{11}{14} [/tex])

Ver imagen msm555
Ver imagen msm555