Joe is using the function E= 1.89x + 2.89y to minimize his expenses when selling
markers and erasers. He has the following
constraints.
2x + y > 10
x + 2y > 8
X>0
y >
What is the minimum value of E?
$28.90
$9.45
$15.12
$13.34

Respuesta :

Answer:

[tex](d)\ \$13.34[/tex]

Step-by-step explanation:

Given

[tex]E = 1.89x + 2.89y[/tex] -- Objective function

Constraints:

[tex]2x + y > 10[/tex]

[tex]x + 2y > 8[/tex]

[tex]x,y>0[/tex]

Required

Minimum value of E

To do this, we apply graphical method

See attachment for plots of [tex]2x + y > 10[/tex] and [tex]x + 2y > 8[/tex]

From the attached plot, the point that satisfy [tex]x,y>0[/tex] is:

[tex](x,y) = (4,2)[/tex]

So, we have:

[tex]E = 1.89x + 2.89y[/tex]

This gives:

[tex]E =1.89 * 4 + 2.89 * 2[/tex]

[tex]E =7.56 + 5.78[/tex]

[tex]E =13.34[/tex]

Ver imagen MrRoyal