Respuesta :

Answer:-

[tex]\bold{\blue{\dfrac{2^{x}+(22)^{x}+(222)^{x}}{3^{x}+(33)^{x}+(333)^{x}}=\dfrac{9}{4}}  }[/tex] 

[tex]\bold{\pink{\dfrac{2^{x}+(22)^{x}+(222)^{x}}{3^{x}+(33)^{x}+(333)^{x}}=[\dfrac{4}{9}]^{-1} }}[/tex] 

[tex]\bold{\green{\dfrac{2^{x}(1+11^{x}+111^{x})}{3^{x}(1+11^{x}+111^{x})}=((\dfrac{2}{3})^{{{2}}})^{{{-1}}}   }}[/tex] 

[tex]\bold{\orange{\dfrac{2^{x}\cancel{(1+11^{x}+111^{x})}}{3^{x}\cancel{(1+11^{x}+111^{x})}}=(\dfrac{2}{3})^{-2}   }}[/tex] 

[tex]\bold{\purple{\dfrac{2^{x}}{3^{x}}=(\dfrac{2}{3})^{-2}   }}[/tex] 

[tex]\bold{\red{(\dfrac{2}{3})^{x} =(\dfrac{2}{3})^{-2}   }}[/tex] 

[tex]\bold{\green{ x=-2 } }[/tex]

Answer:

Step-by-step explanation:

simplify upper n lower fraction of LHS:

2^x+22^x+222^x

= 2^x*1 + (2*11)^x + (2*111)^x

= 2^x*1 + 2^x*11^x + 2^x*111^x

= 2^x*(1+11^x+111^x)

3^x+33^x+333^x

= 3^x*1 + (3*11)^x + (3*111)^x

= 3^x*1 + 3^x*11^x + 3^x*111^x

= 3^x*(1+11^x+111^x)

so LHS

= 2^x*(1+11^x+111^x) / (3^x*(1+11^x+111^x))

= 2^x / 3^x

= (2/3)^x

RHS = 9/4

= (3^2/ 2^2)

= (3/2)^2

= (2/3)^(-2)

so x = -2