Answer:
The appropriate solution is:
(1) 22.81 minutes
(2) 0.171
Step-by-step explanation:
According to the question, the values will be:
The service rate of guess will be:
= [tex]5+3.5[/tex]
= [tex]8.5 \ minutes[/tex]
The mean arrival rate will be:
[tex]\lambda =\frac{60}{5}[/tex]
[tex]=7.5 \ cabs/hr[/tex]
The mean service rate will be:
[tex]\mu= 7.05 \ cabs/hr[/tex]
(1)
The average time a cab must wait will be:
⇒ [tex]W_q=22.95-\frac{1}{7.05}[/tex]
⇒ [tex]=\frac{161.798-1}{7.05}[/tex]
⇒ [tex]=\frac{160.798}{7.05}[/tex]
⇒ [tex]=22.81 \ minutes[/tex]
(2)
The required probability will be:
⇒ [tex]P(X\geq 6)=\frac{1-2.115}{1-7.5}[/tex]
⇒ [tex]=\frac{-1.1115}{-6.5}[/tex]
⇒ [tex]=0.171[/tex]