Answer:
The right answer is:
(a) 0.205
(b) 0.005425
Step-by-step explanation:
The given data is:
0.213, 0.204, 0.208, 0.200, and 0.198
(a)
The mean will be:
= [tex]\frac{Sum \ of \ all \ data}{No. \ of \ data}[/tex]
= [tex]\frac{0.213+ 0.204+ 0.208+ 0.200+0.198}{5}[/tex]
= [tex]\frac{1.023}{5}[/tex]
= [tex]0.2046[/tex]
or,
= [tex]0.205[/tex]
(b)
The standard deviation will be:
[tex]\sigma^2=\Sigma\frac{(x_i-\mu)^2}{N}[/tex]
[tex]=\frac{(0.213-0.2046)^2+...+(0.198-0.2046)^2}{5}[/tex]
[tex]=\frac{0.0001472}{5}[/tex]
[tex]=2.994\times 10^{-5}[/tex]
or,
[tex]=0.005425[/tex]