Consider the set {1, 2, 3, 4}.

a. Make a list of all samples of size 2 that can be drawn from this set of integers.
b. Construct the sampling distribution of sample means for samples of size 2 selected from this set.
c. Provide the distribution both in the form of a table and histogram.

Respuesta :

Answer:

(a)

[tex]List = \{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),\\(4,1),(4,2),(4,3).(4,4)\}[/tex]

(b) Sampling Distribution (Table)

[tex]\begin{array}{cccccccc}{\bar x} & {1} & {1.5} & {2} & {2.5} & {3} & {3.5} & {4} & {Pr}& {\frac{1}{16}} & {\frac{1}{8}} & {\frac{3}{16}} & {\frac{1}{4}} & {\frac{3}{16}} & {\frac{1}{8}} & {\frac{1}{16}} \ \end{array}[/tex]

(b) Sampling Distribution (Histogram)

See attachment

Step-by-step explanation:

Given

[tex]Set = \{1,2,3,4\}[/tex]

[tex]n =4[/tex]

Solving (a): A list of sample size 2

We have:

[tex]n =4[/tex]

[tex]r = 2[/tex] --- the sample size

First, we calculate the number of list using permutation (orders matter)

[tex]n(List) = n^r[/tex]

So, we have:

[tex]n(List) = 4^2[/tex]

[tex]n(List) = 16[/tex]

And the list is:

[tex]List = \{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),\\(4,1),(4,2),(4,3).(4,4)\}[/tex]

Solving (b): Sample distribution  of sample means of (a)

First, calculate the mean of each set using:

[tex]Mean = \frac{Sum}{2}[/tex]

So, we have:

[tex](1,1) \to \frac{1+1}{2} \to 1[/tex]       [tex](1,2) \to \frac{1+2}{2} \to 1.5[/tex]    [tex](1,3) \to \frac{1+3}{2} \to 2[/tex]    [tex](1,4) \to \frac{1+4}{2} \to 2.5[/tex]

[tex](2,1) \to \frac{2+1}{2} \to 1.5[/tex]    [tex](2,2) \to \frac{2+2}{2} \to 2[/tex]     [tex](2,3) \to \frac{2+3}{2} \to 2.5[/tex]    [tex](2,4) \to \frac{2+4}{2} \to 3[/tex]

[tex](3,1) \to \frac{3+1}{2} \to 2[/tex]       [tex](3,2) \to \frac{3+2}{2} \to 2.5[/tex]    [tex](3,3) \to \frac{3+3}{2} \to 3[/tex]    [tex](3,4) \to \frac{3+4}{2} \to 3.5[/tex]

[tex](4,1) \to \frac{4+1}{2} \to 2.5[/tex]    [tex](4,2) \to \frac{4+2}{2} \to 3[/tex]    [tex](4,3) \to \frac{4+3}{2} \to 3.5[/tex]    [tex](4,4) \to \frac{4+4}{2} \to 4[/tex]

Write out the sample means (sorted)

[tex]\bar x =\{1,1.5,1.5,2,2,2,2.5,2.5,2.5,2.5,3,3,3,3.5,3.5,4\}[/tex]

Construct a frequency table

[tex]\begin{array}{cc}{\bar x} & {f} & {1} & {1} & {1.5} & {2} & {2} & {3} & {2.5} & {4} & {3} & {3} & {3.5} &{2} & {4} & {1} & Total & 16\ \end{array}[/tex]

Construct the sampling distribution where the probability is calculated using: [tex]\frac{f}{Total}[/tex]

So, we have:

[tex]\begin{array}{cccccccc}{\bar x} & {1} & {1.5} & {2} & {2.5} & {3} & {3.5} & {4} & {Pr}& {\frac{1}{16}} & {\frac{1}{8}} & {\frac{3}{16}} & {\frac{1}{4}} & {\frac{3}{16}} & {\frac{1}{8}} & {\frac{1}{16}} \ \end{array}[/tex]

Ver imagen MrRoyal