Answer:
The appropriate solution is "61.37 s".
Explanation:
The given values are:
Boat moves,
= 10 m/s
Water flowing,
= 1.50 m/s
Displacement,
d = 300 m
Now,
The boat is travelling,
= [tex]10+1.50[/tex]
= [tex]11.5 \ m/s[/tex]
Travelling such distance for 300 m will be:
⇒ [tex]v = \frac{d}{t} \ sot \ t[/tex]
[tex]=\frac{d}{v}[/tex]
On putting the values, we get
[tex]=\frac{300}{11.5}[/tex]
[tex]=26.08 \ s[/tex]
Throughout the opposite direction, when the boat seems to be travelling then,
= [tex]10-1.50[/tex]
= [tex]8.5 \ m/s[/tex]
Travelling such distance for 300 m will be:
⇒ [tex]v=\frac{v}{t} \ sot \ t[/tex]
[tex]=\frac{d}{v}[/tex]
On putting the values, we get
[tex]=\frac{300}{8.5}[/tex]
[tex]=35.29 \ s[/tex]
hence,
The time taken by the boat will be:
= [tex]26.08+35.29[/tex]
= [tex]61.37 \ s[/tex]