Respuesta :

Answer:

[tex] V_{weights} =1,243 \: cm^3 [/tex]

Step-by-step explanation:

Radius of weight [tex] r_1=\frac{20}{2}= 10 \:cm[/tex]

Radius of hole [tex] r_2=\frac{2}{2}= 1 \:cm[/tex]

Height of weight as well as hole (h) = 2 cm

Volume of weights = (Volume of one weight - volume of hole)

[tex] \therefore V_{weights} = 2 (\pi r_1^2 h - \pi r_2^2 h)[/tex]

[tex]\therefore V_{weights} = 2 \pi (r_1^2 - r_2^2 )h[/tex]

[tex]\therefore V_{weights} = 2 (3.14)(10^2 - 1^2 )2[/tex]

[tex]\therefore V_{weights} =12.56(100 - 1 )[/tex]

[tex]\therefore V_{weights} = 12.56(99)[/tex]

[tex]\therefore V_{weights} =1,243.44[/tex]

[tex]\therefore V_{weights} \approx 1,243 \: cm^3 [/tex]