Answer:
PT is approximately 28.2 m
The height of the flagpole is approximately 25.56 m
QT is approximately 13.15 m
Step-by-step explanation:
Part A
From the attached drawing of the building and the flagpole, we have;
∠TQP = 25° + 90° = 115°
∠TPQ = 90° - 65° = 25°
∴ ∠QTP = 180° - (115° + 25°) = 40°
By sine rule, we have;
[tex]\dfrac{\overline {QT}}{sin(\angle TPQ)} = \dfrac{\overline {PT}}{sin(\angle TQP)} = \dfrac{\overline {QP}}{sin(\angle QTP)}[/tex]
[tex]\therefore \overline {PT} = sin(\angle TQP) \times \dfrac{\overline {QP}}{sin(\angle QTP)}[/tex]
∴ PT = sin(115°) × 20 m/(sin(40°)) = 28.1992924 ≈ 28.2
PT ≈ 28.2 m
Part B
The height of the flagpole, Ta = PT × sin(∠TPa)
∴ Ta ≈ 28.2 × sin(65°) ≈ 25.56
The height of the flagpole, Ta ≈ 25.56 m
Part C
[tex]\overline {QT} = sin(\angle TPQ) \times \dfrac{\overline {QP}}{sin(\angle QTP)}[/tex]
The distance QT= sin(25°) × 20 m/(sin(40°)) ≈ 13.15
QT ≈ 13.15 m