Respuesta :

msm555

Answer:

Solutions given:

given equation is

x²-5x-2=0

comparing above equation with ax²+bx+c,we get

a=1

b=-5

c=-2

By using quadratic equation

x=[tex] \frac{ - b± \sqrt{ {b}^{2} - 4ac} }{2a} [/tex]

x=[tex] \frac{ 5± \sqrt{ {-5}^{2} - 4*1*-2}}{2*1} [/tex]

x=[tex] \frac{ 5± \sqrt{ 25+8}}{2*1} [/tex]

x=[tex] \frac{ 5± \sqrt{ 33 }}{2} [/tex] is a required answer.

Answer:

[tex]x=\dfrac{5 \pm \sqrt{33}}{2}[/tex]

Step-by-step explanation:

Quadratic Formula

[tex]x=\dfrac{-b \pm \sqrt{b^2-4ac} }{2a}\quad\textsf{when }\:ax^2+bx+c=0[/tex]

Given equation:

[tex]x^2-5x-2=0[/tex]

Comparing the given equation with [tex]ax^2+bx+c=0[/tex] to find the values of a, b and c:

  • a = 1
  • b = -5
  • c = -2

Substitute these values into the quadratic formula and solve for x:

[tex]\implies x=\dfrac{-(-5) \pm \sqrt{(-5)^2-4(1)(-2)}}{2(1)}[/tex]

[tex]\implies x=\dfrac{5 \pm \sqrt{25+8}}{2}[/tex]

[tex]\implies x=\dfrac{5 \pm \sqrt{33}}{2}[/tex]