otaku33
contestada

unit 8 right triangle and trigonometry homework 5 trigonometry: finding sides and angles solve for x round to the nearest tenth.
plllls I will make brainlesst ​

unit 8 right triangle and trigonometry homework 5 trigonometry finding sides and angles solve for x round to the nearest tenthplllls I will make brainlesst class=

Respuesta :

Answer:

5. x = 25.6

6. x = 11.0

7. x = 41.8°

8. x = 64.2°

9. x = 12.8°

10. x = 51.3°

Step-by-step explanation:

Let's find the x value for each triangle.

For point 5      

We have:

x: is the opposite cathetus to 52°  

20: is the adjacent cathetus to 52°  

52°: is the angle

We can find "x" with the following trigonometric function:

[tex] tan(52) = \frac{x}{20} [/tex]

[tex] x = tan(52)*20 = 25.6 [/tex]

For point 6      

We have:

x: is the hypotenuse  

5: is the opposite cathetus to the given angle  

27°: is the angle

To find "x" we need to use the trigonometric function:

[tex] sin(27) = \frac{5}{x} [/tex]

[tex]x = \frac{5}{sin(27)} = 11.0[/tex]

For point 7

We know:

x°: is the angle

6: is the hypotenuse

4: is the opposite cathetus to x°

Hence, x is:

[tex] sin(x) = \frac{4}{6} [/tex]

[tex] x = sin^{-1}(\frac{4}{6}) = 41.8 [/tex]

For point 8    

We have:

x°: is the angle

14: is the adjacent cathetus to x°

29: is the opposite cathetus to x°

To calculate "x" we need to use the trigonometric function tan(x):

[tex] tan(x) = \frac{29}{14} [/tex]

[tex] x = tan^{-1}(\frac{29}{14}) = 64.2 [/tex]

For point 9    

We have:

x°: is the angle

54: is the hypotenuse

12: is the opposite cathetus to x°

We can use sin(x) to solve for x:

[tex] sin(x) = \frac{12}{54} [/tex]

[tex] x = sin^{-1}(\frac{12}{54}) = 12.8 [/tex]

For point 10  

We have:

x°: is the angle

40: is the hypotenuse

25: is the adjacent cathetus to x°

We need to use cos(x) to solve for x:

[tex] cos(x) = \frac{25}{40} [/tex]  

[tex] x = cos^{-1}(\frac{25}{40}) = 51.3 [/tex]

I hope it helps you!

To solve the given questions, either of the trigonometric functions; sine, cosine and tangent of an angle has to be applied appropriately to either of the questions. The answers to the questions are:

5. x = 25.60

6. x = 11.00

7. x = [tex]41.8^{o}[/tex]

8. x = [tex]64.2^{o}[/tex]

9. x = [tex]12.8^{o}[/tex]

10. x = [tex]51.3^{o}[/tex]

The questions given are right angled triangles which requires the application of trigonometric functions appropriately. A right angle triangle is one that has one of its angles to be [tex]90^{o}[/tex].

So, each of the questions can be solved as follows:

5. Tan θ = [tex]\frac{opposite}{adjacent}[/tex]

Tan 52 = [tex]\frac{x}{20}[/tex]

⇒  x = Tan 52 * 20

       = 25.5988

x = 25.60

6. Sin θ = [tex]\frac{opposite}{hypotenuse}[/tex]

Sin 27 = [tex]\frac{5}{x}[/tex]

⇒ x = [tex]\frac{5}{Sin 27}[/tex]

       = 11.0134

x = 11.00

7. Sin θ = [tex]\frac{opposite}{hypotenuse}[/tex]

Sin x = [tex]\frac{4}{6}[/tex]

        = 0.66667

x = [tex]Sin^{-1}[/tex] 0.66667

  = [tex]41.8^{o}[/tex]

x = [tex]41.8^{o}[/tex]

8. Tan θ = [tex]\frac{opposite}{adjacent}[/tex]

Tan x = [tex]\frac{29}{14}[/tex]

          = 2.0714

x = [tex]Tan^{-1}[/tex] 2.0714

  = [tex]64.2^{o}[/tex]

x = [tex]64.2^{o}[/tex]

9. Sin θ = [tex]\frac{opposite}{hypotenuse}[/tex]

Sin x = [tex]\frac{12}{54}[/tex]

        = 0.22222

x = [tex]Sin^{-1}[/tex] 0.22222

  = [tex]12.8^{o}[/tex]

x = [tex]12.8^{o}[/tex]

10. Cos θ = [tex]\frac{adjacent}{hypotenuse}[/tex]

Cos x = [tex]\frac{25}{40}[/tex]

         = 0.625

x = [tex]Cos^{-1}[/tex] 0.625

  = [tex]51.3^{o}[/tex]

x = [tex]51.3^{o}[/tex]

Visit: https://brainly.com/question/20926900