Respuesta :

Answer:

Option C: (4.47,-0.46)

Step-by-step explanation:

To convert Cartesian coordinates [tex](x,y)[/tex] into polar coordinates [tex](r,\theta)[/tex], use the following formulas:

[tex]r=\sqrt{x^{2}+y^{2} }[/tex]

[tex]\theta=tan^{-1}(\frac{y}{x})[/tex]

Therefore:

[tex]r=\sqrt{x^{2} +y^{2}}=\sqrt{4^2+(-2)^2}=\sqrt{16+4}=\sqrt{20}=4.47[/tex]

[tex]\theta=tan^{-1}(\frac{y}{x})=tan^{-1}(\frac{-2}{4})=tan^{-1}(-\frac{1}{2})=-0.46[/tex]

Because (4,-2) is located in Quadrant II, the angle must also be located in Quadrant II. Therefore, the correct polar coordinate would be (4.47,-0.46)

The polar coordinate would be (4.47, -0.46).

What is the difference between cartesian coordinates and polar coordinates?

Although Cartesian coordinates can be utilized in three dimensions (x, y, and z), polar coordinates only identify two dimensions (r and θ). If a third axis, z (height), exists added to polar coordinates, the coordinate system exists directed to as cylindrical coordinates (r, θ, z).

Given:

Let the point be (4,-2).

To convert, cartesian coordinates (x, y) to polar coordinates (r, [tex]$\theta[/tex]),

[tex]$r &=\sqrt{x^{2}+y^{2}} \\[/tex]

[tex]$\theta &=\tan ^{-1} \frac{y}{x} \\$[/tex]

[tex]$ r &=\sqrt{4^{2}+(-2)^{2}} \\[/tex]

[tex]${data-answer}amp;=\sqrt{16+4} $[/tex]

[tex]${data-answer}amp;=\sqrt{20}[/tex]

= 4.47

[tex]$\theta &=\tan ^{-1} \frac{-2}{4} \\[/tex]

[tex]${data-answer}amp;=\tan ^{-1} \frac{-1}{2}=-0.46 \\[/tex]

The polar coordinate would be (4.47,-0.46)

Therefore, the correct answer is option c. r = 4.47, [tex]$\theta[/tex] = -0.46

To learn more about cartesian coordinates and polar coordinates

https://brainly.com/question/18042894

#SPJ2