Use technology to convert (4, -2) into approximate polar coordinates.
Please hurry!!

Answer:
Option C: (4.47,-0.46)
Step-by-step explanation:
To convert Cartesian coordinates [tex](x,y)[/tex] into polar coordinates [tex](r,\theta)[/tex], use the following formulas:
[tex]r=\sqrt{x^{2}+y^{2} }[/tex]
[tex]\theta=tan^{-1}(\frac{y}{x})[/tex]
Therefore:
[tex]r=\sqrt{x^{2} +y^{2}}=\sqrt{4^2+(-2)^2}=\sqrt{16+4}=\sqrt{20}=4.47[/tex]
[tex]\theta=tan^{-1}(\frac{y}{x})=tan^{-1}(\frac{-2}{4})=tan^{-1}(-\frac{1}{2})=-0.46[/tex]
Because (4,-2) is located in Quadrant II, the angle must also be located in Quadrant II. Therefore, the correct polar coordinate would be (4.47,-0.46)
The polar coordinate would be (4.47, -0.46).
Although Cartesian coordinates can be utilized in three dimensions (x, y, and z), polar coordinates only identify two dimensions (r and θ). If a third axis, z (height), exists added to polar coordinates, the coordinate system exists directed to as cylindrical coordinates (r, θ, z).
Given:
Let the point be (4,-2).
To convert, cartesian coordinates (x, y) to polar coordinates (r, [tex]$\theta[/tex]),
[tex]$r &=\sqrt{x^{2}+y^{2}} \\[/tex]
[tex]$\theta &=\tan ^{-1} \frac{y}{x} \\$[/tex]
[tex]$ r &=\sqrt{4^{2}+(-2)^{2}} \\[/tex]
[tex]${data-answer}amp;=\sqrt{16+4} $[/tex]
[tex]${data-answer}amp;=\sqrt{20}[/tex]
= 4.47
[tex]$\theta &=\tan ^{-1} \frac{-2}{4} \\[/tex]
[tex]${data-answer}amp;=\tan ^{-1} \frac{-1}{2}=-0.46 \\[/tex]
The polar coordinate would be (4.47,-0.46)
Therefore, the correct answer is option c. r = 4.47, [tex]$\theta[/tex] = -0.46
To learn more about cartesian coordinates and polar coordinates
https://brainly.com/question/18042894
#SPJ2