Question 11 Find the value of y. X+ 13 45° No links please! Thanks for the help!

Answer:
First option: [tex]13 \sqrt{2} [/tex]
Step-by-step explanation:
[tex]cosθ = \frac{adj}{hyp} [/tex]
[tex]cos45° = \frac{13}{y} [/tex]
Multiply both sides by y:
[tex]y(cos45°) = 13[/tex]
[tex]y ( \frac{ \sqrt{2} }{2} ) = 13[/tex]
[tex]y = 13 \div \frac{ \sqrt{2} }{2} [/tex]
[tex]y = 13 \times \frac{2}{ \sqrt{2} } [/tex]
[tex]y = \frac{26}{ \sqrt{2} } ( \frac{ \sqrt{2} }{ \sqrt{2} } )[/tex]
[tex]y = \frac{26 \sqrt{2} }{2} [/tex]
[tex]y = 13 \sqrt{2} [/tex]
Option A
[tex]{\pink{y = 13 \sqrt{2}}}[/tex]
[tex] \sf{cosθ= \frac{ B}{C} }[/tex]
[tex] \dashrightarrow \sf \: {cos45° = \frac{13}{y} }[/tex]
Multiply both sides by y:
[tex] \sf \ \: y(cos45°) = 13y(cos45°)=13[/tex]
[tex] \sf \: y ( \frac{ \sqrt{2} }{2} ) = 13[/tex]
[tex]\implies \sf \: y = 13 \div \frac{ \sqrt{2} }{2}[/tex]
[tex] \sf \implies \: y = 13 \times \frac{2}{ \sqrt{2} }[/tex]
[tex] \implies \sf \: y = \frac{26}{ \sqrt{2} } ( \frac{ \sqrt{2} }{ \sqrt{2} } )[/tex]
[tex] \implies \sf y = \frac{26 \sqrt{2} }{2}[/tex]
[tex] \sf \boxed {\pink{y = 13 \sqrt{2}}}[/tex]