Respuesta :

Answer:

[tex]f(g(5)) = 0[/tex]

Step-by-step explanation:

Given

[tex]f(x) = x+ 2[/tex]

[tex]g(x) = x^2 - 27[/tex]

Required

[tex]f(g(5))[/tex]

First, calculate [tex]f(g(x))[/tex]

We have:

[tex]f(x) = x+ 2[/tex]

Substitute [tex]g(x)[/tex] for x

[tex]f(g(x)) = g(x) + 2[/tex]

Substitute [tex]g(x) = x^2 - 27[/tex]

[tex]f(g(x)) = x^2 -27+ 2[/tex]

[tex]f(g(x)) = x^2 -25[/tex]

Substitute 5 for x

[tex]f(g(5)) = 5^2 -25[/tex]

[tex]f(g(5)) = 25 -25[/tex]

[tex]f(g(5)) = 0[/tex]