Let alpha and beta be the radiant measures of two angles. Then sin left parenthesis 2 alpha plus 2 beta right parenthesis is equal to

Respuesta :

Answer:

sin2αcos2β + cos2αsin2β

Step-by-step explanation:

Given that

sin(A+B) = sinA cos B + cos A sinB

According to the question;

sin(2α+2β) = sin2αcos2β + cos2αsin2β

where A =  2α and B = 2β