Respuesta :

Answer:

The solution is [tex]x = -\frac{5}{6}[/tex]

Step-by-step explanation:

We solve this question using exponential properties.

We have that:

[tex](\frac{25}{4})^{3x} = \frac{32}{3125}[/tex]

Simplifying:

[tex](\frac{5^2}{2^2})^{3x} = \frac{2^5}{5^5}[/tex]

[tex]([\frac{5}{2}]^{2})^{3x} = (\frac{2}{5})^{5}[/tex]

[tex](\frac{5}{2})^{6x} = (\frac{2}{5})^{5}[/tex]

Changing the numerator and denominator in the right side:

[tex](\frac{5}{2})^{6x} = (\frac{5}{2})^{-5}[/tex]

Since both bases are equal:

[tex]6x = -5[/tex]

[tex]x = -\frac{5}{6}[/tex]

The solution is [tex]x = -\frac{5}{6}[/tex]