Respuesta :

Answer:

  • [tex]\dfrac{a+b+c}{a} =7[/tex]

Step-by-step explanation:

Given :-

  • [tex]\dfrac{a+b}{3} =\dfrac{b+c}{6} =\dfrac{c+a}{5}[/tex]

And we need to prove that ,

  • [tex]\dfrac{a+b+c}{a} =7[/tex]

So let us assume that ,

[tex]\implies\dfrac{a+b}{3} =\dfrac{b+c}{6} =\dfrac{c+a}{5}=k[/tex]

Where k is a constant . Now equate each of the three terms separately to k . Therefore we have ,

[tex]\dfrac{a+b}{3}=k[/tex]

[tex]\implies a + b = 3k \quad \dots (i) [/tex]

Similarly we can say that ,

[tex]\implies c + b = 6k \quad \dots (ii)[/tex]

[tex]\implies a + c = 5k\quad \dots (iii) [/tex]

Subtracting (i) and (ii) :-

[tex]\implies a - c = -3k \quad \dots (iv) [/tex]

Adding (iv) and (iii) :-

[tex]\implies 2c = 4k [/tex]

[tex]\implies \boxed{c = 4k }[/tex]

Put this is (ii) :-

[tex]\implies b +4k = 6k [/tex]

[tex]\implies \boxed{b= 2k }[/tex]

Similarly we will get ,

[tex]\implies \boxed{a = k }[/tex]

Proving the given equation :-

[tex]\implies \dfrac{a+b+c}{a} \\\\\implies \dfrac{k+2k+4k}{k} \\\\\implies \dfrac{7k}{k}=\boxed{\red{ 7}}[/tex]

Hence proved !