Given:
The expressions are [tex]1.888\times 10^9[/tex] and [tex]5.9\times 10^6[/tex].
To find:
The quotient of [tex]1.888\times 10^9[/tex] and [tex]5.9\times 10^6[/tex] expressed in scientific notation.
Solution:
Quotient of [tex]1.888\times 10^9[/tex] and [tex]5.9\times 10^6[/tex] is:
[tex]\dfrac{1.888\times 10^9}{5.9\times 10^6}=\dfrac{1.888}{5.9}\times \dfrac{10^9}{10^6}[/tex]
[tex]\dfrac{1.888\times 10^9}{5.9\times 10^6}=0.32\times 10^{9-6}[/tex]
[tex]\dfrac{1.888\times 10^9}{5.9\times 10^6}=0.32\times 10^{3}[/tex]
In the scientific notation, the first number is between 1 to 10. So, 0.32 can be written as [tex]\dfrac{3.2}{10}[/tex].
[tex]\dfrac{1.888\times 10^9}{5.9\times 10^6}=\dfrac{3.2}{10}\times 10^{3}[/tex]
[tex]\dfrac{1.888\times 10^9}{5.9\times 10^6}=3.2\times 10^{3-1}[/tex]
[tex]\dfrac{1.888\times 10^9}{5.9\times 10^6}=3.2\times 10^{2}[/tex]
Therefore, the value of the quotient is [tex]3.2\times 10^{2}[/tex].