Respuesta :

Answer:

[tex]\text{Area}=\frac{15(x+1)}{2(x-2)}[/tex]

Step-by-step explanation:

Length of the rectangle given in the picture = [tex]\frac{5x+5}{x+3}[/tex]

Width of the rectangle = [tex]\frac{3x+9}{2x-4}[/tex]

Area of the rectangle = Length × Width

                                    = [tex]\frac{5x+5}{x+3}\times \frac{3x+9}{2x-4}[/tex]

                                    = [tex]\frac{5(x+1)}{x+3}\times \frac{3(x+3)}{2(x-2)}[/tex]

                                    = [tex]\frac{15(x+1)(x+3)}{2(x+3)(x-2)}[/tex]

                                    = [tex]\frac{15(x+1)}{2(x-2)}[/tex]

Therefore, area of the given rectangle is [tex]\frac{15(x+1)}{2(x-2)}[/tex].